Практическое занятие № 1. Применение алгоритма Евклида для нахождения НОД.

Практическое занятие № 2. Решение линейных диофантовых уравнений.

Практическое занятие № 3. Решение задач с применением теории чисел.

Практическое занятие № 4. Применение классических шифров замены.

Практическое занятие № 5. Применение классических шифров перестановки.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1. ПРИМЕНЕНИЕ АЛГОРИТМА ЕВКЛИДА ДЛЯНАХОЖДЕНИЯ НОД

Цель: изучить применение алгоритма Евклида и бинарного алгоритма для нахождения НОД.

Задание:

- 1. С помощью алгоритма Евклида найти НОД чисел:
 - 1. НОД (130, 15)
 - 2. НОД (374, 32)
 - 3. НОД (5741, 76)
 - 4. НОД (846, 42)
 - 5. НОД (5783, 3420)
- 2. С помощью расширенного Алгоритма Евклида найти НОД (a, b) и значения s и t:
 - 1. a = 57 b = 14
 - 2. a = 328 b = 36
 - 3. a = 1179 b = 27
 - 4. a = 502 b = 52
 - 5. a = 791 b = 13
- 3. С помощью бинарного алгоритма найти НОД двух данных чисел, записанных в двоичной системе счисления:
 - $\begin{array}{lll} 1. \ a = 11000001000 & b = 11110000100 \\ 2. \ a = 1000001111 & b = 1101100011 \\ 3. \ a = 1011100101 & b = 1000110001 \\ 4. \ a = 1001011101 & b = 1000110001 \\ 5. \ a = 1000011100 & b = 111010001 \end{array}$

Содержание отчета: Отчет должен содержать пошаговое решение заданий.

Контрольные вопросы:

- 1. Что понимается под наибольший общий делитель двух целых чисел?
- 2. Какой алгоритм можно использовать для нахождения наибольший общий делитель?

ПРАКТИЧЕСКАЯ ЗАНЯТИЕ № 2. РЕШЕНИЕ ЛИНЕЙНЫХ ДИОФАНТОВЫХ УРАВНЕНИЙ

Цель: изучить решение линейных диофантовых уравнений, решение задач с элементами теории чисел.

Теоретические вопросы

- 1. Понятие неопределенного уравнения.
- 2. Понятие диофантового уравнения.
- 3. Понятие линейного диофантового уравнения.

Задание:

- 1. Найдите частное и общие решения следующих линейных диофантовых уравнений:
 - 1.25x + 10y = 15
 - 2. 19x + 13y = 20
 - 3. 14x + 21y = 77
 - 4. 40x + 16y = 88
- 2. Определите, сколько из следующих целых чисел пройдут испытание Ферма на простоту чисел: 100, 110, 130, 150, 200, 250, 271, 341, 561. Используйте основание 2.
- 3. Найдите результаты следующих операций:
 - 1. 22 mod 7
 - 2. 140 mod 10
 - 3. -78 mod 13
 - 4. 0 mod 15

Содержание отчета: Отчет должен содержать пошаговое решение заданий.

Контрольные вопросы:

- 1. Что такое линейное диофантовое уравнение двух переменных? Сколько решений может иметь такое уравнение? Как может быть найдено решение(я)?
- 2. Объясните разницу между простым числом и составным целым числом.

ПРАКТИЧЕСКАЯ ЗАНЯТИЕ № 3. РЕШЕНИЕ ЗАДАЧ С ПРИМЕНЕНИЕМ ТЕОРИИ ЧИСЕЛ

Цель: решение задач с элементами теории чисел.

Теоретические вопросы

- 1. Основная теорема арифметики. Наибольший общий делитель. Взаимно простые числа. Алгоритм Евклида для нахождения НОД.
 - 2. Отношения сравнимости. Свойства сравнений. Модулярная арифметика.
- 3. Сравнения первой степени. Линейные диофантовые уравнения. Расширенный алгоритм Евклида.
 - 4. Арифметические операции над большими числами.

Задания:

- 1. Найти НОД (1176, 315).
- 2. Решить систему сравнений

a)
$$\begin{cases} x \equiv 2 \pmod{5}, \\ x \equiv 8 \pmod{11}; \end{cases}$$
b)
$$\begin{cases} 4x \equiv 3 \pmod{15}, \\ 3x \equiv 1 \pmod{10}. \end{cases}$$
c)
$$\begin{cases} x \equiv 2 \pmod{5}, \\ x \equiv 8 \pmod{11}. \end{cases}$$
d)
$$\begin{cases} 3x + 4y \equiv 29 \pmod{143}, \\ 2x - 9y \equiv -847 \pmod{143}. \end{cases}$$

3. Найти остаток от деления:

а)
$$2^{1050}$$
 на 17; b) 5^{1995} на 9; c) 7^{1018} на 19.

Содержание отчета: Отчет должен содержать пошаговое решение заданий.

Контрольные вопросы:

- 1. Какие числа называются взаимно простыми?
- 2. Как выполняются арифметические операции над большими числами?

ПРАКТИЧЕСКАЯ ЗАНЯТИЕ № 4. ПРИМЕНЕНИЕ КЛАССИЧЕСКИХ ШИФРОВЗАМЕНЫ.

Цель: приобрести практический навык в исследовании простейших методов криптографической зашиты информации.

Вопросы для повторения:

- 1. В чем заключается система шифрования Цезаря?
- 2. Как используется схема Вижинера?
- 3. В чем отличие шифра Гронсфельда от шифра Цезаря?
- 4. Как производится расшифровка текста?

Методические указания.

Шифры простой замены

Система шифрования Цезаря - частный случай шифра простой замены. Метод основан на замене каждой буквы сообщения на другую букву того же алфавита, путем смещения от исходной буквы на К букв.

Известная фраза Юлия Цезаря

VENI VI D I VICI, где

A	В	C	D	Е	F	G	Н	I	G	K	L	M
	•				•							
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
					-							

пришел, увидел, победил, зашифрованная с помощью данного метода, преобразуется в SBKF SFAF SFZF при смещении на 4 символа влево.

Греческим писателем Полибием за 100 лет до н.э. был изобретен так называемый **полибианский квадрат** размером 5*5, заполненный алфавитом в случайном порядке. Греческий алфавит имеет 24 буквы, а 25-м символом является пробел. Для шифрования на квадрате находили букву текста и записывали в зашифрованное сообщение букву, расположенную ниже ее в том же столбце. Если буква оказывалась в нижней строке таблицы, то брали верхнюю букву из того же столбца.

M	↑ T	L	E	X
A	K	Fι	Q	Y
N	B ▼	R ▼	0	W
С	J ▼	Н	D ♦	P
U	I I	S	G	V

Схема шифрования Вижинера. Таблица Вижинера представляет собой квадратную матрицу с n² элементами, где n — число символов используемого алфавита. На рисунке показана верхняя часть таблицы Вижинера для кириллицы. Каждая строка получена циклическим сдвигом алфавита на символ. Для шифрования выбирается буквенный ключ, в соответствии с которым формируется рабочая матрица шифрования.

a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	Т	У	ф	\mathbf{X}	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a
В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	Т	у	ф	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я	a	б
Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	0	П	p	c	Т	у	ф	X	Ц	Ч	Ш	Ш	ъ	Ы	Ь	Э	Ю	Я	a	б	В
Д	e	ë	Ж	3	И	й	К	Л	M	Н	0	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ
e	ë	Ж	3	И	й	К	Л	M	Н	0	П	p	c	T	у	ф	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д
И	Τ.	Д.	до	33	-e	йс	тр	ок	и																							

Таблица Вижинера

Осуществляется это следующим образом. Из полной таблицы выбирается первая строка и те строки, первые буквы которых соответствуют буквам ключа. Первой

размещается первая строка, а под нею — строки, соответствующие буквам ключа в порядке следования этих букв в ключе шифрования (например ключ «книга»).

Процесс шифрования осуществляется следующим образом:

- 1. под каждой буквой шифруемого текста записываются буквы ключа. Ключ при этом повторяется необходимое число раз.
- 2. каждая буква шифруемого текста заменяется по подматрице буквами находящимися на пересечении линий, соединяющих буквы шифруемого текста в первой строке подматрицы и находящимися под ними букв ключа.
 - 3. полученный текст может разбиваться на группы по несколько знаков.

Пусть, например, требуется зашифровать сообщение: *максимально допустимой ценой является пятьсот руб. за штуку*. В соответствии с первым правилом записываем под буквами шифруемого текста буквы ключа. Получаем:

максимально допустимой ценой является пятьсот руб. за штуку книгакнигак нигакнигак нигак нигакниг акнигак ниг ак нигак

a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	T	y	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
К	Л	M	Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й
Н	0	П	p	С	T	у	ф	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M
И	й	К	Л	M	Н	O	П	p	c	T	у	ф	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3
Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	0	П	р	c	Т	У	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В
a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	0	П	p	c	Т	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я

Дальше осуществляется непосредственное шифрование в соответствии со вторым правилом, а именно: берем первую букву шифруемого текста (М) и соответствующую ей букву ключа (К); по букве шифруемого текста (М) входим в рабочую матрицу шифрования и выбираем под ней букву, расположенную в строке, соответствующей букве ключа (К),— в нашем примере такой буквой является Ч; выбранную таким образом букву помещаем в зашифрованный текст. Эта процедура циклически повторяется до зашифрования всего текста.

Эксперименты показали, что при использовании такого метода статистические характеристики исходного текста практически не проявляются в зашифрованном сообщении. Нетрудно видеть, что замена по таблице Вижинера эквивалентна простой замене с циклическим изменением алфавита, т.е. здесь мы имеем полиалфавитную подстановку, причем число используемых алфавитов определяется числом букв в слове ключа. Поэтому стойкость такой замены определяется произведением стойкости прямой замены на число используемых алфавитов, т.е. число букв в ключе.

Расшифровка текста производится в следующей последовательности:

- 1. над буквами зашифрованного текста последовательно надписываются буквы ключа, причем ключ повторяется необходимое число раз.
- 2. в строке подматрицы Вижинера, соответствующей букве ключа отыскивается буква, соответствующая знаку зашифрованного текста. Находящаяся под ней буква первой строки подматрицы и будет буквой исходного текста.
 - 3. полученный текст группируется в слова по смыслу.

Нетрудно видеть, что процедуры как прямого, так и обратного преобразования являются строго формальными, что позволяет реализовать их алгоритмически. Более того, обе процедуры легко реализуются по одному и тому же алгоритму.

Одним из недостатков шифрования по таблице Вижинера является то, что при небольшой длине ключа надежность шифрования остается невысокой, а формирование длинных ключей сопряжено с трудностями.

Нецелесообразно выбирать ключи с повторяющимися буквами, так как при этом стойкость шифра не возрастает. В то же время ключ должен легко запоминаться, чтобы его можно было не записывать. Последовательность же букв не имеющих смысла, запомнить трудно.

С целью повышения стойкости шифрования можно использовать усовершенствованные варианты таблицы Вижинера. Приведем только некоторые из них:

- во всех (кроме первой) строках таблицы буквы располагаются в произвольном порядке.
- В качестве ключа используется случайность последовательных чисел. Из таблицы Вижинера выбираются десять произвольных строк, которые кодируются натуральными числами от 0 до 10. Эти строки используются в соответствии с чередованием цифр в выбранном ключе.

Известны также и многие другие модификации метода.

Шифры сложной замены

Шифр Гронсфельда состоит в модификации шифра Цезаря числовым ключом. Для этого под буквами сообщения записывают цифры числового ключа. Если ключ короче сообщения, то его запись циклически повторяют. Зашифрованное сообщение получают примерно также, как в шифре Цезаря, но используют не одно жестко заданное смещение, а фрагменты ключа.

Пусть в качестве ключа используется группа из трех цифр — 314, тогда сообщение С О В Е Р Ш Е Н Н О С Е К Р Е Т Н О В 1 4 3 1

В шифрах многоалфавитной замены для шифрования каждого символа исходного сообщения применяется свой шифр простой замены (свой алфавит).

		A	Б	В	Γ	Д	E	Ë	Ж	3	И	Й	К	Л	M	H	0	П	P	C	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я	_
A		A	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я	
Б			Α	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я
В		Я		A	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю
Γ	1	Ю	Я	_	A	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э
Д		Э	Ю	Я	1	A	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь
E	,	Ь	Э	Ю	Я	_	A	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы
Я	[В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	C	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я		A	Б
		Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	M	Н	О	П	P	C	T	У	Φ	X	Ц	Ч	Ш	Ш	Ъ	Ы	Ь	Э	Ю	Я		A

Каждая строка в этой таблице соответствует одному шифру замены аналогично шифру Цезаря для алфавита, дополненного пробелом. При шифровании сообщения его выписывают в строку, а под ним ключ. Если ключ оказался короче сообщения, то его циклически повторяют. Зашифрованное сообщение получают, находя символ в колонке таблицы по букве текста и строке, соответствующей букве ключа. Например, используя ключ АГАВА, из сообщения ПРИЕЗЖАЮ ШЕСТОГО получаем следующую шифровку:

Такая операция соответствует сложению кодов ASCII символов сообщения и ключа по модулю 256.

Практическая часть.

Задание

1. Придумайте 5 фраз, каждая минимум из 5 слов, и зашифруйте их разными методами (то есть, фразы и методы шифрования не должны повторяться).

ПРАКТИЧЕСКАЯ ЗАНЯТИЕ № 5. ПРИМЕНЕНИЕ КЛАССИЧЕСКИХ ШИФРОВ ПЕРЕСТАНОВКИ

Цель: приобрести практический навык в исследовании простейших методов криптографической зашиты информации.

Вопросы для повторения:

- 1. Объясните сущность алгоритма перестановки
- 2. Как производится расшифровка текста?

Методические указания.

Алгоритм перестановки заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Рассмотрим некоторые разновидности этого метода, которые могут быть использованы в автоматизированных системах.

Самая простая перестановка — написать исходный текст задом наперед и одновременно разбить шифрограмму на пятерки букв. Например, из фразы

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ.

получится такой шифротекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЬ ТСУП

В последней группе (пятерке) не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, следует его дополнить незначащей буквой (например, О) до числа, кратного пяти:

ПУСТЬ-БУДЕТ-ТАККА-КМЫХО-ТЕЛИО.

Тогда шифрограмма, несмотря на столь незначительные изменения, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

Кажется, ничего сложного, но при расшифровке проявляются серьезные неудобства.

В шифрах средних веков часто использовались таблицы, с помощью которых выполнялись простые процедуры шифрования, основанные на перестановке букв в сообщении. Ключом в данном случае является размеры таблицы. Например, сообщение "Неясное становится еще более непонятным" записывается в таблицу из 5 строк и 7 столбцов по столбцам:

нонс Б Н Я Е О Я O E T E Я \mathbf{C} В Е Л П Н Τ И Щ Е ОЫ H A T E E Н M

Для получения шифрованного сообщения текст считывается по строкам и группируется по 5 букв:

НОНСБ НЯЕЕО ЯОЕТЯ СВЕЛП НСТИЩ ЕОЫНА ТЕЕНМ

Несколько большей стойкостью к раскрытию обладает метод одиночной перестановки по ключу. Он отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы. Используя в качестве ключа слово «ЛУНАТИК», получим следующую таблицу:

Л	У	Н	A	T	И	К	A	И	К	Л	Н	T	У
4	7	5	1	6	2	3	1	2	3	4	5	6	7
Н	O	Н	C	Б	Н	R	C	Н	R	Н	Н	Б	О
E	E	О	Я	О	Е	T	Я	E	T	E	О	О	E
Я	C	В	E	Л	П	Н	E	П	Н	Я	В	Л	C
C	T	И	Щ	E	О	Ы	Щ	О	Ы	C	И	E	T
Н	A	T	E	E	Н	M	Е	Н	M	Н	T	Е	A
Д	о пер	реста	новк	Ш				Γ	Іосле	е пер	еста	НОВІ	ки

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если в ключе встретились бы одинаковые буквы, они бы нумеровались слева направо. Получается шифровка:

СНЯНН БОЯЕТ ЕООЕЕ ПНЯВЛ СЩОЫС ИЕТЕН МНТЕА

Для обеспечения дополнительной скрытности можно повторно шифровать сообщение, которое уже было зашифровано. Для этого размер второй таблицы подбирают так, чтобы длины ее строк и столбцов отличались от длин строк и столбцов первой таблицы. Лучше всего, если они будут взаимно простыми.

Кроме алгоритмов одиночных перестановок применяются алгоритмы двойных перестановок. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровке перестановки проводятся в обратном порядке. Например, сообщение "Приезжаю шестого" можно зашифровать следующим образом:

	2	4	1	3		1	2	3	4		1	2	3	4
4	П	P	И	E	4	И	П	E	P	1	A	3	Ю	Ж
1	3	Ж	A	Ю	1	A	3	Ю	Ж	2	Е	_	C	Ш
2	_	Ш	E	C	2	E.	_	C	Ш	3	Γ	T	O	О
3	T	Ο	Γ	O	3	Γ	T	O	O	4	И	П	E	P

Двойная перестановка столбцов и строк

В результате перестановки получена шифровка АЗЮЖЕ_СШГТООИПЕР. Ключом к шифру служат номера столбцов 2413 и номера строк 4123 исходной

таблицы.

Число вариантов двойной перестановки достаточно быстро возрастает с увеличением размера таблицы: для таблицы 3×3 их 36, для 4×4 их 576, а для 5*5 их 14400.

Практическая часть. Задание

- **1.** Придумайте 4 фразы, каждая минимум из 4 слов, и зашифруйте их разными методами (то есть, фразы и методы шифрования не должны повторяться).
- **2.** Используя таблицу кодировки ASCII, запишите получившиеся результаты в двоичном коде.

Таблица соответствия кодов ASCII и значений

	1:	аолица (COOTI	зетствия	і код	ов ASCI	1 И 3	начении	
Шестнадцатерич ная система счисления	ASCII символ								
20	про бел	40	@	60	,	C0	A	E0	a
21	!	41	A	61	a	C1	Б	E1	б
22	"	42	В	62	b	C2	В	E2	В
23	#	43	С	63	С	C3	Γ	E3	Γ
24	\$	44	D	64	d	C4	Д	E4	Д
25	%	45	Е	65	e	C5	Е	E5	e
26	&	46	F	66	f	C6	Ж	E6	Ж
27	'	47	G	67	g	C7	3	E7	3
28	(48	Н	68	h	C8	И	E8	И
29)	49	I	69	i	C9	Й	E9	й
2A	*	4A	J	6A	j	CA	К	EA	К
2B	+	4B	K	6B	k	CB	Л	EB	Л
2C	,	4C	L	6C	1	CC	M	EC	M
2D	-	4D	M	6D	m	CD	Н	ED	Н
2E		4E	N	6E	n	CE	О	EE	О
2F	/	4F	0	6F	О	CF	П	EF	П
30	0	50	P	70	p	D0	P	F0	p
31	1	51	Q	71	q	D1	С	F1	c
32	3	52	R	72	r	D2	Т У	F2	T
33		53	S	73	S	D3		F3	у
34	4	54	T	74	t	D4	Φ	F4	ф
35	5	55	U	75	u	D5	X	F5	X
36	6	56	V	76	V	D6	Ц	F6	Ц
37	7	57	W	77	W	D7	Ч	F7	Ч
38	8	58	X	78	X	D8	Ш	F8	Ш
39	9	59	Y	79	y	D9	Щ	F9	Щ
3A	:	5A	Z	7A	Z	DA	Ъ	FA	Ъ
3B	;	5B	[7B	{	DB	Ы	FB	Ы
3C	<	5C	\	7C		DC	Ь	FC	Ь
3D	=	5D		7D	}	DD	Э	FD	Э
3E	>	5E	٨	7E	~	DE	Ю	FE	Ю
3F	?	5F		7F	•	DF	Я	FF	R