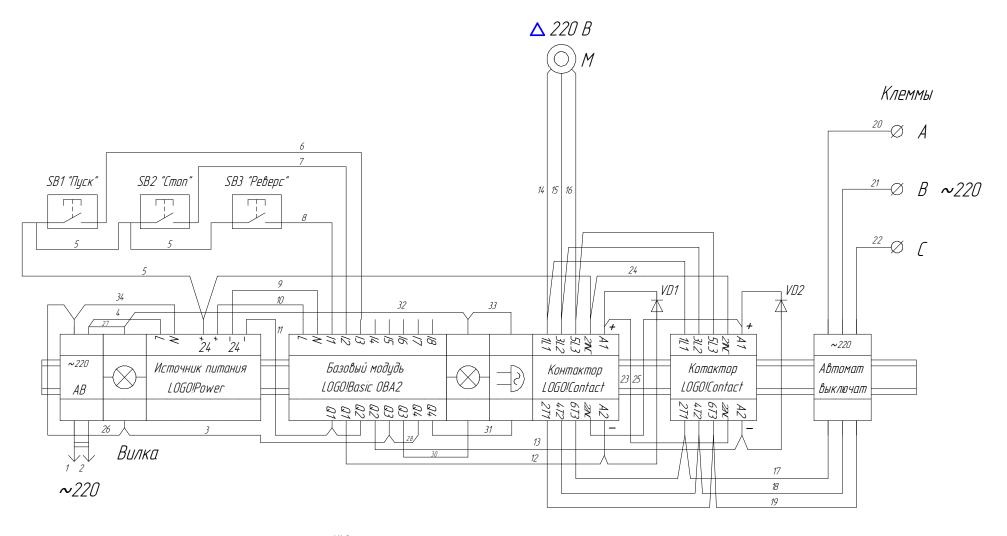
Лабораторная работы №1

Разработка (программирование, техническая реализация) и проверка схем управления приводами различных типовых механизмов на базе программируемых микропроцессорных реле ф. Сименс.

Цель занятия: Приобретение навыков проектирования систем управления на базе программируемых модулей LOGO! фирмы Siemens.


1. Объекты и средства исследования

Объектом исследования является программируемый набор модулей LOGO!, состоящий из базового модуля версии OBA2, силового модуля и источника питания. Для исследования используется лабораторная панель, на которой установлены:

- 1) выключатель автоматический BA61F29-2 ~380V 50-60Hz;
- 2) источник питания LOGO!Power; входное напряжение 120/230V; выходное напряжение 24V/1,3A;
- 3) программируемый модуль LOGO! 12/24RC;
- 4) контакторы LOGO!Contact24;
- 5) выключатель автоматический C10 ~380V 50Hz;
- 6) кнопки управления "Пуск", "Стоп", "Реверс";
- 7) лампы сигнальные ЛС47 ~220V 50Hz 2 штуки;
- 8) звонок сигнальный ~220V;
- 9) электродвигатель типа АНР 5674 У3, IP54; 1350 об/мин; ~220V, 50Hz, $I_{\text{ном}}$ =1,1A, P=180W, $\cos \varphi$ =0,68, η =64%;
- 10) клеммы для подключения трехфазного питания ~220V

Автоматические выключатели, источник питания, программируемый модуль и лампы крепятся на din рейке. Кнопки управления в исходном состоянии разомкнуты и не имеют фиксации. Обмотка трехфазного асинхронного электродвигателя соединена по схеме "треугольник" и подключена к клеммам контактора LOGO!Contact24. LOGO! имеет двойную изоляцию, поэтому его заземление не требуется.

Электромонтажная схема стенда приведена на рис.1, принципиальная электрическая схема – на рис.2.

HL2

Рис. 1. Электромонтажная схема

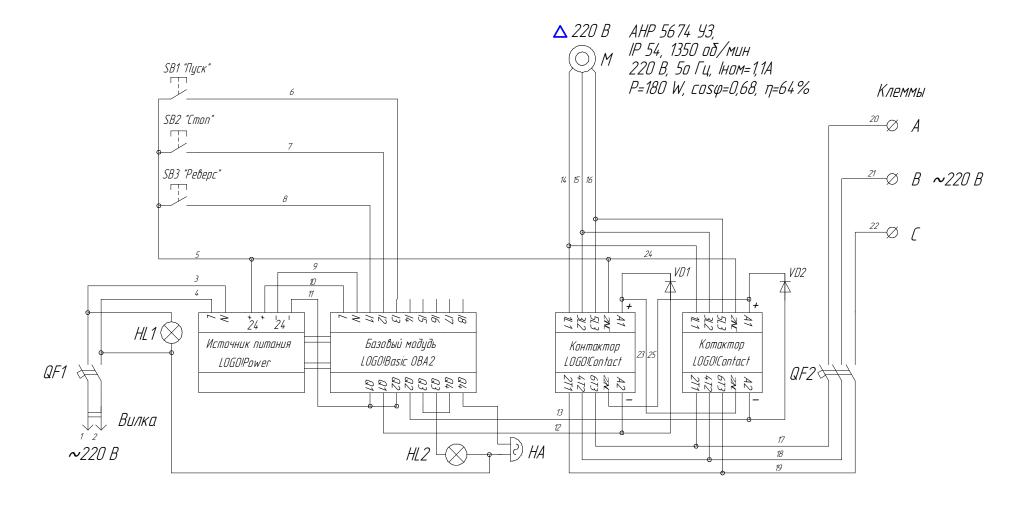


Рис. 2. Принципиальная электрическая схема панели

2. Краткая справка по работе в среде программирования LOGO!Soft-Comfort

С помощью среды LOGO!Soft-Comfort очень удобно и эффективно составлять схемы управления для модулей LOGO! Процесс составления заключается в перемещении элементов на рабочее поле и их соединении между собой. Достоинствами среды LOGO!Soft-Comfort является простота и наглядность программирования, а также возможность моделирования работы схемы для отладки возникающих в ней ошибок.

После запуска среды LOGO!Soft-Comfort необходимо создать новый файл, в котором появляется

- рабочее поле для составления схемы;
- основная панель инструментов, имеющая вид

- информационное окно, отображающее результаты моделирования;
- строка состояния, расположенная внизу окна среды LOGO!Soft-Comfort и показывающая используемый в данное время инструмент, масштаб рабочего поля, выбранную версию модуля LOGO! (OBA1, OBA2, OBA3, OBA4)

Необходимо отметить, что модули LOGO!, используемые в лабораторной работе, версии OBA2, поэтому после создания файла необходимо выбрать именно эту версию в меню Tools->Device selection->OBA2 Standart.

2.1. Назначение кнопок основной панели инструментов

- используется для перемещения установленных блоков, текста и соединительных линий. Находясь в любом другом режиме, можно выбрать данный не только мышкой, но и нажатием кнопки **ESC**.
- используется для вставки текстовых блоков на рабочее поле и их редактирования. Можно выбирать размер и тип шрифта, а также его цвет. Если при выборе данного инструмента выделен какой-нибудь блок (группа блоков), то текстовая область будет связана с ним.

- используется для разбиения и связывания соединительных линий между блоками щелчком левой кнопки мышки. Когда соединительная линия разбита, ее свободные концы отмечаются названиями блока-приемника и блока-источника. Данная операция удобна при разработке больших схем управления и позволяет облегчить их читаемость.
- используется для связи блоков друг с другом с помощью соединительных линий
- используется для выбора входов и выходов LOGO!, постоянных сигналов "0" и "1", и блока-маркера
- используется для выбора простых логических блоков
- используется для выбора специальных логических блоков
- используется для выбора режима симуляции работы схемы

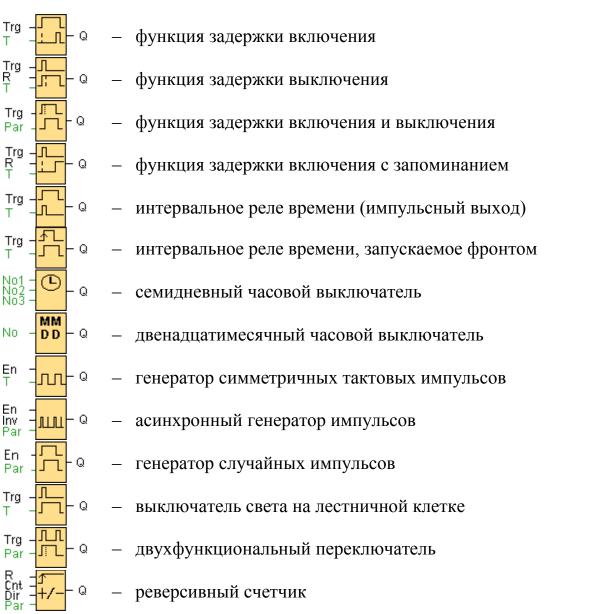
2.2. Назначение блоков меню

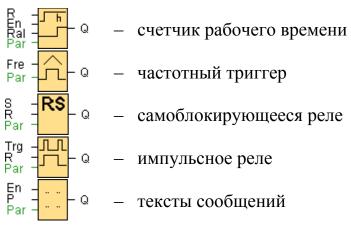
При выборе данного меню появляется следующая панель

- I Q используется для задания входов LOGO! и их свойств
 1 M Q используется для задания выходов LOGO! и их свойств
 1 M Q используется для задания блоков-маркеров (виртуальных выходов), которые имеют на своем выходе такое же значение, как и на своем входе. Используя маркеры памяти, можно превысить максимальное количество последовательных блоков.
 - 10 □ используется для задания постоянного сигнала "0"
 hi □ используется для задания постоянного сигнала "1"

2.3. Обзор функций меню

При выборе данного меню появляется следующая панель простых логических функций


- функция "И" принимает состояние 1 только тогда, когда все входы имеют состояние "1". Если какой-либо вход этого блока не подключен, то к этому входу прикладывается сигнал "1".
- 2 В ↑ Q функция "И" с обнаружением фронта RLO принимает состояние "1" только тогда, когда все входы имеют состояние "1" и хотя бы один вход в предыдущем цикле имел состояние "0". Если какойлибо вход этого блока не подключен, то к этому входу прикладывается сигнал "1".
- функция "И-НЕ" принимает состояние "0" только тогда, когда все входы имеют состояние "1". Если какой-либо вход этого блока не подключен, то к этому входу прикладывается сигнал "1".
 - функция "И-НЕ" с обнаружением фронта RLO принимает состояние "1" только тогда, когда хотя бы один вход имеет состояние "0", и все входы имели состояние "1" в предыдущем цикле. Если какой-либо вход этого блока не подключен, то к этому входу прикладывается сигнал "1".
- функция "ИЛИ" принимает состояние "1", если хотя бы один вход имеет состояние "1". Если какой-либо вход этого блока не подключен, то к этому входу прикладывается сигнал "0".
- функция "ИЛИ-НЕ" принимает состояние "1" только тогда, когда все входы имеют состояние "0". Как только любой из входов включается (состояние "1"), выход "ИЛИ-НЕ" устанавливается в "0". Если какой-либо вход этого блока не подключен, то к этому входу прикладывается сигнал "0".


- 2 функция исключающее "ИЛИ" принимает состояние "1", если входы имеют разные состояния. Если какой-либо вход этого блока не подключен, то к этому входу прикладывается сигнал "0".
- 1 Q функция "НЕ" принимает состояние "1", если вход имеет состояние "0". Иными словами, функция "НЕ" инвертирует состояние входа.

2.4. Обзор функций меню

При выборе данного меню появляется следующая панель специальных логических функций

Двойным щелчком левой кнопки мыши на установленном на рабочем поле блоке, можно войти в меню редактирования его свойств. Так, например, для блока

Т

одинительной кнопки мыши на установленном на рабочем поле блоке, можно войти в меню редактирования его свойств. Так, например, для блока

одключаемая ко входу LOGO!, с фиксацией; **Momentary** – без фиксации.

2.5. Меню симуляции работы схемы

В режиме симуляции работы схемы подача сигналов на входы LOGO! осуществляется нажатием мышкой на соответствующие кнопки, например на

кнопку . Если эта кнопка без фиксации, то после отпускания мышки кнопка вернется в исходное состояние; если же кнопка с фиксацией, то она останется

Отсутствие сигнала на выходе LOGO! соответствует потухшей лампе, изображенной на кнопке , наличие же сигнала – ее "горению".

Так, наличию сигнала на первом входе и появлению сигнала на первом выходе соответствует следующее изображение

Кроме того, сигналу "0" при моделировании соответствует синий цвет соединительной линии, сигналу "1" – красный.

Более полную инструкцию на английском языке по работе в среде LOGO!Soft-Comfort и описание функций можно получить, нажав клавишу **F1**.

3. Запись программы с компьютера в LOGO!

Для записи программы с компьютера необходимо переключить LOGO! в режим приема файла вручную или предоставить это сделать LOGO! автоматически.

после чего подключить LOGO! с помощью кабеля к COM-порту компьютера.

Автоматическое же переключение в режим приема файла происходит при включении источника питания LOGO!, когда кабель уже подключен.

Далее в среде LOGO!Soft-Comfort в меню Tools->Options->Interface необходимо выбрать COM-порт, к которому подключен LOGO! или предоставить это сделать программе автоматически, используя Tools->Options-> Interface->Automatic Detection. Нажатием Tools->Transfer->PC->LOGO! осуществляется копирование файла в LOGO!, причем программа, находящаяся в нем до этого, стирается.

Запуск программы осуществляется выбором опции Start в режиме программирования на LOGO!

3. ПОСТРОЕНИЕ МИНИМАЛЬНЫХ ЛОГИЧЕСКИХ СХЕМ

Одну и ту же релейно-контакторную схему управления можно реализовать различными логическими функциями. Так как количество используемых блоков в LOGO! ограничено (не более 56), то естественно стремиться к построению экономных схем. Схему, содержащую наименьшее число предоставляемых LOGO! стандартных блоков, будем называть минимальной.

Таким образом, оптимальный синтез логической схемы по заданной релейно-контакторной сводится к минимизации реализующей ее булевой функции, которую будем называть функцией проводимости.

Среди методов нахождения функции проводимости особо выделим метод Шеннона, Лупанова, каскадов, а также градиентный метод как универсальные. Однако они требуют специальной математической подготовки и применения ЭВМ [1].

Более наглядным и простым является числовой метод минимизации булевых функций, предложенный В.А. Орса [2]. Монография Орса написана доступным для неспециалистов языком, в ней вводятся все основные понятия алгебры логики, используемые при минимизации по данному методу, она содержит большое количество примеров и может быть использована студентами при выполнении лабораторной работы (особенно это касается задания 3).

В качестве дополнительных источников по алгебре логики рекомендуем литературу [3, 4].

Задание 1

Используя базис элементарных логических операций, включающий отрицание " $^-$ ", конъюнкцию " * " — логическое "И" и дизъюнкцию " * " — логическое "ИЛИ", реализовать следующие функции:

- 1) импликацию $I_1 \rightarrow I_2$;
- 2) сложение по mod2 $I_1 \oplus I_2$ и альтернативную дизъюнкцию $I_1 \Delta I_2$;
- 3) эквивалентность $I_1 \sim I_2$;
- 4) штрих Шеффера I₁ | I₂;
- 5) $(I_1 \rightarrow I_2) \& (I_2 \rightarrow I_1);$
- 6) $(\overline{I}_1 \vee I_2) \wedge (\overline{I}_2 \vee I_1);$
- 7) $(I_1 \oplus I_2 \oplus I_3) \vee (I_1 \rightarrow I_2);$
- 8) $\{I_1 \mid [(I_2 \& I_3) \oplus (I_2 \vee I_3)]\} \sim I_2$

Определение основных функций алгебры логики содержится в табл.1, основные формулы алгебры логики приведены в приложениях (список литературы).

Таблица 1

Α	В	A&B	$A \vee B$	$A\Delta B$	$A \rightarrow B$	$A \sim B$	$A \oplus B$	$A \mid B$
0	0	0	0	0	1	1	0	1
0	1	0	1	1	1	0	1	1
1	0	0	1	1	0	0	1	1
1	1	1	1	0	1	1	0	0

4. Оформление отчета

Отчет по лабораторной работе должен содержать:

- сформулированную цель выполняемой работы;
- личную контакторную и логическую схемы;
- таблицы значений состояния входов и выходов работы схемы;
- выводы по проделанной работе

Список литературы

- 1. Нигматуллин Р.Г. Сложность булевых функций. М.: "Наука" гл. ред. физ.мат. лит., 1991. – 240 с.;
- 2. Орса В.А. Числовой метод минимизации булевых функций. Издательство Ростовского университета, 1987. 64 с.;
- 3. Яблонский С.В., Гаврилов Г.П., Кудрявцев В.Б. Функции алгебры логики и классы Поста. М.: "Наука" гл. ред. физ.-мат. лит., 1966. 120 с.;
- 4. Гиндикин С.Г. Алгебра логики в задачах. М.: "Наука" гл. ред. физ.-мат. лит., 1972. 288 с.