ГЛАВА ВТОРАЯ ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

2.1. Краткие сведения из теории [1]

Переходные, или неустановившиеся процессы, имеют место при переходе от одного установившегося состояния электрической цепи к другому и возникают при изменении величины напряжения или параметров цепи вследствие изменения конфигурации цепи.

Установившимися режимами, как правило, являются режим периодического синусоидального тока, режим постоянного тока или режим отсутствия тока в цепи.

Длительность переходных процессов обычно невелика, порядка долей секунды, и зависит от численных значений параметров электрической цепи. Изучение этих процессов представляет интерес, поскольку они часто сопровождаются возникновением значительных напряжений и токов по сравнению с этими же величинами при установившемся режиме. Знание законов протекания переходных процессов позволяет решать вопросы, связанные с состоянием электрических цепей установок, где переходные процессы представляют собой нормальный режим.

Переходные процессы возникают вследствие невозможности мгновенного изменения запасов энергии электрического и магнитного полей, связанных с соответствующими элементами электрической цепи, характеризуемыми сосредоточенными параметрами С и L

$$W_{\mathfrak{B}} = \frac{Cu_C^2}{2}, W_M = \frac{Li_L^2}{2}$$

Переходные процессы в цепи с элементами, характеризуемыми сосредоточенными параметрами г и L (рис.2.1), описываются уравнением, составленным по второму закону Кирхгофа

28

Таким образом, отыскание тока как функции времени есть решение дифференциального уравнения.

Решение есть сумма частного решения неоднородного дифференциального уравнения

$$L\frac{di}{dt} + ri = U \quad \longrightarrow \quad i = \frac{U}{r}$$

плюс общее решение однородного уравнения

$$L\frac{di}{dt}+ri=0 \rightarrow i=Ae^{pt},$$

где*А* и *p* – некоторые постоянные, не зависящие от времени. Следовательно, решение дифференциального уравнения запишется в виде выражения для полного тока

$$i = \frac{U}{r} + Ae^{pt}$$

Частное решение дифференциального уравнения называют принужденной составляющей. Она представляет собой составляющую, изменяющуюся с той же частотой, что и действующая в схеме принуждающая ЭДС.

Если в схеме действует синусоидальная ЭДС частотой ω, то и принужденная составляющая также является синусоидальным током с частотой ω. В цепи синусоидального тока принужденная составля-

ющая определяется с помощью символического метода.

Если в схеме действует источник постоянной ЭДС, то принужденная составляющая есть постоянный ток и его находят с помощью методов расчета цепей постоянного тока. Необходимо помнить: постоянный ток через емкость не проходит, поэтому принужденная составляющая тока в ветви с емкостью равна нулю; падение напряжения на индуктивности от неизменного во времени тока равно нулю.

Общее решение однородного уравнения (уравнение без правой части) называют свободной составляющей, т.е. свободной от вынуждающей силы. Сумма принужденной и свободной составляющих дает действительную величину тока или напряжения.

Законы коммутации.

Ток через индуктивность не может изменяться скачком.

Если допустить, что ток через индуктивность может изменяться скачком, то

$$\frac{di}{dt} = \infty$$

тогда уравнение

$$L\frac{di}{dt} + ri = U$$

превратится в

$$\infty + ri = U$$

и второй закон Кирхгофа выполняться не будет. Напряжение на индуктивности может изменяться скачкообразно. Это не противоречит второму закону Кирхгофа.

Напряжение на емкости не может изменяться скачком.

Уравнение по второму закону Кирхгофа для цепи с емкостью (рис. 2.2)

$$u_C + ri = U_{\rm MJM}u_C + rC\frac{du_C}{dt} = U$$

Рис.2.2

Если допустить, что напряжение на емкости может изменяться скачком, то

$$\frac{du_C}{dt} = \alpha$$

и уравнение принимает вид

$$u_C + \infty = U$$
.

Это противоречит второму закону Кирхгофа.

Из указанных рассуждений следуют два закона коммутации.

Первый закон коммутации: ток через индуктивность непосредственно до коммутации равен току через ту же индуктивность непосредственно после коммутации.

Второй закон коммутации: напряжение на емкости непосредственно до коммутации и напряжение на ней непосредственно после коммутации равны.

Остальные величины: напряжения на индуктивностях, активных сопротивлениях, токи через емкости и активные сопротивления могут изменяться скачком. Поэтому их значения непосредственно после коммутации часто оказываются неравными их значениям до коммутации.

Значение токов через индуктивности и напряжения на емкостях, известные из докоммутационного режима, называют *независимыми начальными значениями или условиями*. Значения остальных токов и напряжений при t = 0 + в послекоммутационной схеме, определяе-

31

мые по независимым начальным значениям из законов Кирхгофа, называют *зависимыми начальными значениями или условиями*.

Классический метод расчета переходных процессов.

Для расчета переходных процессов разработаны различные аналитические методы. При классическом методе решение дифференциальных уравнений ведется методами классической математики. При операторном методе расчет переходного процесса переносится в область функций комплексного переменного, в которой дифференциальные уравнения преобразуются в алгебраические.

Классический метод расчета переходных процессов состоит из следующих этапов:

1. Расчет цепи до коммутации в установившемся режиме для определения начальных значений Li(0-), $u_C(0-)$.

2. Расчет цепи после коммутации в установившемся режиме. Определение принужденной составляющей искомого тока $j_{p}(t)$.

3. Составление системы дифференциальных уравнений по I, II законам Кирхгофа относительно мгновенных значений токов цепи. При этом используются равенства:

$$u_R = ri_R, u_L = L \frac{di_L}{dt}, u_C = \frac{l}{C} \int i_C dt$$

4. Составление характеристического уравнения для системы однородных дифференциальных уравнений методом приведения к одному уравнению высокого порядка, методом определителя или методом операторного сопротивления (проводимости).

5. Решение характеристического уравнения и запись свободной составляющей искомого тока в виде, содержащем неизвестные постоянные (A_1 , A_2 для цепи с двумя реактивными элементами):

$$i_{ce} = A_1 e^{p_1 t} + A_2 e^{p_2 t}$$

6. Определение зависимых начальных условий через независимые, т. е. переход от значений $i_L(0-), u_C(0-)$ к значениям i(+0), di(+0)/dt.

32

7. Составление уравнений и определение постоянных интегрирования A_1, A_2 , после чего записывается искомый ток в виде

$$i(t) = i_{np}(t) + i_{ce}(t).$$

Составление уравнений переходного процесса.

Уравнения для послекоммутационной схемы (рис. 2.3) составляют для полных токов и напряжений по обычным правилам: выбирают произвольно положительные направления токов и составляют уравнения по первому и второму законам Кирхгофа

Рис. 2.3

Чтобы перейти к уравнениям для свободных токов освобождают систему от вынуждающих ЭДС

$$i_{1cs} - i_{2cs} - i_{3cs} = 0$$
$$i_{1cs}r_1 + L\frac{di_{cs}}{dt} + i_{2cs}r_2 = 0$$
$$i_{2cs}r_2 - \frac{1}{C}\int i_{3cs}dt = 0$$

Алгебраизация уравнений для свободных токов.

Решением однородного дифференциального уравнения является показательная функция

$$i_{ce} = A e^{pt}$$

где А – постоянная интегрирования для каждого тока своя;

p- показатель затухания одинаковый для всех свободных токов. Найдем производную свободного тока по времени

$$\frac{di_{c_{\theta}}}{dt} = \frac{d(Ae^{pt})}{dt} = pAe^{pt} = pi_{c_{\theta}}$$

Найдем интеграл от свободного тока

$$\int i_{c_{\theta}} dt = \int A e^{pt} dt = \frac{1}{p} A e^{pt} = \frac{1}{p} i_{c_{\theta}}$$

Следовательно, свободное напряжение на емкости равно

$$u_C = \frac{1}{C} \int i_{ce} dt = \frac{1}{Cp} i_{ce},$$

а свободное напряжение на индуктивности равно

$$u_L = L \frac{d i_{c_{\theta}}}{d t} = L p i_{c_{\theta}}$$

Подставив полученные выражения в систему дифференциальных уравнений, получим

$$i_{1c6} - i_{2c6} - i_{3c6} = 0$$

$$i_{1c6}r_1 + Lp \ i_{c6} + i_{2c6}r_2 = 0$$

$$i_{2c6}r_2 - \frac{1}{Cp}i_{3c6} = 0$$

Данная система уравнений, не содержащая дифференциалов и интегралов, есть результат алгебраизации дифференциальных уравнений.

Подключение неразветвленной цепи с индуктивным и резистивным элементами к источнику постоянной ЭДС (рис. 2.1).

Составляем уравнение по второму закону Кирхгофа

$$L\frac{di}{dt} + ri = E$$

Находим принужденную составляющую полного тока. Она равна

$$i_{np} = \frac{E}{r}$$

Записываем уравнение для свободной составляющей тока

$$Lpi_{ce} + ri_{ce} = 0$$

Уравнение без свободного тока называют характеристическим

$$Lp + r = 0$$

Отсюда находим корень характеристического уравнения, он же показатель затухания

$$p = -\frac{r}{L}$$

Записываем полный ток

$$i = i_{np} + i_{ce} = \frac{E}{r} + Ae^{-\frac{r}{L}t}$$

Определяем постоянную интегрирования, используя первый за-кон коммутации

$$i_l(0_-) = i_L(0_+)$$

В докоммутационной схеме ток был равен нулю

$$i_l(0_-)=0$$

При t=0+ в послекоммутуционной схеме

$$i(0_{+}) = \frac{E}{r} + Ae^{-\frac{r}{L}0} = \frac{E}{r} + A_{\text{ИЛИ}} \quad 0 = \frac{E}{r} + A_{\text{ИЛИ}}$$

Отсюда находим постоянную интегрирования

$$A = -\frac{E}{r}$$

Записываем закон изменения полного тока в цепи

$$i = i_{np} + i_{ce} = \frac{E}{r} - \frac{E}{r}e^{-\frac{r}{L}t} = \frac{E}{r}(1 - e^{-\frac{r}{L}t})$$

Закон изменения напряжения на резистивном элементе

$$u_r = ri = E(1 - e^{-\frac{r}{L}t})$$

Закон изменения напряжения на индуктивном элементе

$$u_{L} = L \frac{d i}{d t} = L \frac{E}{r} \frac{d(1 - e^{-\frac{r}{L}t})}{d t} = L \frac{E}{r} \frac{r}{L} e^{-\frac{r}{L}t} = E e^{-\frac{r}{L}t}$$

Временные графики для мгновенных значений напряжений и тока приведены на рис. 2.4

Рис. 2.4

Подключение неразветвленной цепи с емкостным и резистивным элементами к источнику постоянной ЭДС (рис. 2.5).

Составляем уравнение по второму закону Кирхгофа

$$RC\frac{du_C}{dt} + u_C = E$$

Находим принужденную составляющую напряжения на конденсаторе. Она равна установившемуся значению после окончания переходного процесса

$$u_{np} = E$$

Записываем уравнение для свободной составляющей напряжения

$$RC\frac{du_C}{dt} + u_C = 0$$

Уравнение без свободной составляющей называют характеристическим

$$RCp+1=0$$

Отсюда находим корень характеристического уравнения, он же показатель затухания

$$p = -\frac{1}{RC}$$

Записываем выражение для полного напряжения на конденсаторе

$$u_{C} = u_{Cnp} + u_{Cce} = E + Ae^{-\frac{1}{RC}t}$$

Определяем постоянную интегрирования, используя второй за-кон коммутации

$$u_C(0_-) = u_C(0_+)_{.}$$

В докоммутационной схеме напряжение было равно нулю

$$u_C(0_-)=0$$

при t=0+ в послекоммутуционной схеме

$$u_C(0_+) = E + Ae^{-\frac{1}{RC}0} = E + A_{\text{ИЛИ}} 0 = E + A_{\text{.}}$$

Отсюда постоянная интегрирования равна

$$A = -E$$

Записываем закон изменения полного напряжения на конденсаторе

$$u_{C} = u_{np} + u_{ce} = E - Ee^{-\frac{1}{RC}t} = E(1 - e^{-\frac{1}{RC}t})$$

Закон изменения тока

$$i = C\frac{du_{C}}{dt} = C\frac{E}{R}\frac{d(1 - e^{-\frac{1}{RC}t})}{dt} = CE\frac{1}{RC}e^{-\frac{1}{RC}t} = \frac{E}{R}e^{-\frac{1}{RC}t}$$

Закон изменения напряжения на резистивном элементе

$$u_r = ri = E(1 - e^{-\frac{1}{rC}t})$$

Временные графики для мгновенных значений напряжений и тока приведены на рис. 17

Графики будут меняться при изменении параметров схемы R и C. Величина напряжения от них не зависит. Величина тока обратно пропорциональна сопротивлению R и не зависит от емкости C. Длительность переходного процесса прямо пропорциональна значениям R и C.

Теоретически переходный процесс длится бесконечно долго. Практически переходный процесс заканчивается через (3–5)т

Рис. 2.5

Постоянная времени т – это время, в течение которого свободные составляющие уменьшаются в е-раз (см. рис. 2.6). Постоянную времени можно определить по известному графику изменения свободной составляющей и R=100Ом и C=100мкФ,

$$\tau = R \cdot C = 100 \cdot 100 \cdot 10^{-6} = 0,01c$$

Подключение неразветвленной цепи с индуктивным и резистивным элементами к источнику синусоидального напряжения (рис. 2.1)

$$u = U_{m} \sin(\omega t + \psi_{u}) .$$

$$L \frac{di_{L}}{dt} + ri_{L} = u$$

$$i_{L} = i_{Lnp} + i_{Lcs}$$

$$I_{Lmnp} = \frac{U_{m}}{R + j \omega L} = \frac{U_{m}e^{j \cdot \psi_{l}}}{Ze^{j \cdot \varphi}} = I_{Lmnp}e^{j(\cdot \psi_{l} - \cdot \varphi)} = I_{Lmnp}e^{j \cdot \psi_{np}}$$

$$i_{Lcs} = Ae^{pt}$$

$$Lp + R = 0$$

$$p = -\frac{R}{L}$$

$$0 = I_{Lmnp} \sin \psi_{np} + A$$

$$A = -I_{Lmnp} \sin \psi_{np}$$

$$i_{L} = I_{Lmnp} \sin(\omega + \psi_{np}) - I_{Lmnp} \sin \psi_{np}e^{-\frac{R}{L}t}$$

График тока *i* (см. рис. 2.7) получаем как сумму графиков *i*_{Lnp} и *i*_{Lco}. Составляющая тока *i*_{Lnp} меняется по синусоидальному закону. На рис. 19свободная составляющая меняется по закону экспоненты и стремится к нулю.

Рис. 2.7

В те промежутки времени, когда li_{np} и i_{Lco} имеют одинаковые знаки, ток i_{l} имеет значения, большие задаваемых источником. Говорят об ударном токе I_{yo} .

Рассмотрим, какие процессы могут возникнуть на практике при коммутациях в цепи с катушкой (рис. 2.8).

Ток *i* не может измениться скачком. В момент, наступивший сразу после коммутации, ток останется тем же, что и до коммутации. На месте разрыва возникает перенапряжение, так как сопротивление воздушного промежутка велико. Это приводит к пробою, появляется искрение (электрическая дуга), портящее оборудование.

Рис. 2.8

Ситуация ухудшается, если к зажимам индуктивной катушки подключен вольтметр (см. рис. 2.8). Сопротивление вольтметра велико, ток в нем при нормальной работе мал. При размыкании ключа большой ток индуктивной катушки, который не может измениться скачком, будет замыкаться через вольтметр, сопротивление которого все же меньше, чем у воздушного промежутка. На вольтметре возникает перенапряжение, прибор может выйти из строя. Такое же напряжение будет и на индуктивной катушке, что может привести к пробою ее изоляции.

Поэтому сначала нужно убрать напряжение либо параллельно подключить ветвь для замыкания тока катушки.Нельзя отключать незашунтированную катушку с током.

Подключение неразветвленной цепи с индуктивным, емкостным и резистивным элементами к источнику постоянной ЭДС (рис. 2.9).

Рис. 2.9

Уравнение электрического состояния

$$u_{Ccb} = A_1 e^{p_1 t} + A_2 e^{p_2 t}$$

Поскольку ток $i = i_C = C \frac{du_C}{dt}$, то

получаем
$$LC \frac{d^2 u_C}{dt^2} + rC \frac{d u_C}{dt} + u_C = U$$

дифференциальное уравнение второго порядка

$$\frac{d^2 u_C}{dt^2} + \frac{r}{L}\frac{du_C}{dt} + \frac{1}{LC}u_C = \frac{U}{LC}$$

Будем искать решение в виде

$$u_C = u_{Cnp} + u_{Ccb}$$

После окончания переходного процесса конденсатор зарядится до напряжения источника $u_{Cnp} = U$ Характеристическое уравнение

$$p^2 + \frac{r}{L}p + \frac{1}{LC} = 0$$

Находим корни

$$p_{1,2} = -\frac{r}{2L} \pm \sqrt{\frac{r^2}{4L^2} - \frac{1}{LC}}$$

Апериодический переходный процесс - корни действительные и разные. Свободная составляющая представляется в виде

$$u_{Ccb} = A_1 e^{p_1 t} + A_2 e^{p_2 t}$$

При t=0+

$$u_{C}(0 \rightarrow) = u_{Cnp}(0 \rightarrow) + u_{Ccs}(0 \rightarrow)$$
$$0 = U + A_{1} + A_{2}$$
$$\frac{du_{C}}{dt} = \frac{du_{Cnp}}{dt} + \frac{du_{Ccs}}{dt}$$

Уравнение в начальный момент *t*=0+имеет вид

$$\frac{i_C(0+)}{C} = p_1 A_1 + p_2 A_2$$

До коммутации ток в цепи не протекал.

$$0 = p_1 A_1 + p_2 A_2$$

Таким образом

$$\begin{cases} 0 = U + A_1 + A_2 \\ 0 = p_1 A_1 + p_2 A_2 \end{cases}$$

Отсюда находим постоянные интегрирования

$$A_{1} = \frac{p_{2}U}{p_{1} - p_{2}}$$
$$A_{2} = -\frac{p_{1}U}{p_{1} - p_{2}}$$

Закон изменения напряжения на конденсаторе

$$u_{C} = U + \frac{U}{p_{1} - p_{2}} (p_{2}e^{p_{1}t} - p_{1}e^{p_{2}t})$$

Закон изменения тока

$$i = C \frac{du_C}{dt} = \frac{CU}{p_1 - p_2} (p_2 p_1 e^{p_1 t} - p_1 p_2 e^{p_2 t})$$

Поскольку произведение корней равно свободному члену

$$p_{1}p_{2} = \frac{1}{LC}, \text{ to}$$
$$i = \frac{U}{L(p_{1} - p_{2})} (e^{p_{1}t} - e^{p_{2}t})$$

График переходного процесса (рис. 2.10).

В точке перегиба кривой напряжения ток имеет максимальное значение.

Рис. 2.10

Критический или предельный апериодический переходный процесс – корни действительные и равные. Свободная составляющая напряжения имеет вид

$$u_{Cce} = (A_1 + A_2 t)e^{pt}$$

При t=0+

$$0 = U + A_1$$

Второе уравнение в начальный момент времени имеет вид

$$\frac{i_C(0+)}{C} = pA_1 + A_2$$

До коммутации ток в цепи не протекал

$$0 = pA_1 + A_2$$

Таким образом

$$\begin{cases} 0 = U + A_1 \\ 0 = pA_1 + A_2 \end{cases}$$

Отсюда находим постоянные интегрирования

$$A_1 = -U$$
$$A_2 = pU$$

Закон изменения напряжения на конденсаторе

$$u_C = U + (-U + pUt)e^{pt}$$

Закон изменения тока

$$i = C\frac{du_C}{dt} = CpUe^{pt} + Cp(-U + pUt)e^{pt} = Cp^2Ute^{pt}$$

Колебательный переходный процесс - корни комплексные сопряженные $p_{1,2} = -\delta \pm j \omega$

 δ – коэффициент затухания,

 ω_0 - угловая частота собственных клебаний.

Свободная составляющая записывается в виде

$$u_{Cce} = Ae^{-\vartheta}\sin(\varphi t + \varphi)$$

Из второго закона коммутации следует

$$0 = U + A\sin \varphi \quad A = -\frac{U}{\sin \varphi}$$

Второе уравнение в начальный момент времени имеет вид

$$\frac{i_{C}(0+)}{C} = -A \, \delta \sin \, \phi + A \, \omega \cos \, \phi$$

Отсюда
$$\begin{cases} 0 = U + A \sin \, \phi \\ 0 = -A \, \delta \sin \, \phi + A \, \omega \cos \, \phi \end{cases}$$

$$\varphi = arctg \frac{-\omega}{\delta}$$

Произведение корней равно свободному члену характеристического уравнения:

$$p_1 p_2 = (\delta^2 + \omega_0^2) = \frac{1}{LC}$$

Получаем прямоугольный треугольник с гипотенузой, равной

$$\frac{1}{\sqrt{LC}}$$
 и углом при δ , равным ϕ .

Отсюда

$$i_1(0_{-}) = i_2(0_{-}) = \frac{E}{R_1 + R_2} = \frac{120}{50 + 10} = 2A$$

Закон изменения напряжения на конденсаторе

$$u_C = U - \frac{U}{\omega \sqrt{LC}} e^{-\vartheta} \sin(\omega t + \phi)$$

Закон изменения тока

$$i_C = C \frac{du_C}{dt} = \frac{U}{\omega L} e^{-\delta} \sin \omega t$$

График изменения напряжения и тока (рис. 2.11)

Рис. 2.11

2.2. Расчет переходных процессов в цепи с двумя реактивными элементами

В заданной электрической схеме (рис. 2.12) с источником постоянной ЭДС Е=90 В и параметрами R1=20 Ом, R=10 Ом, L=10 мГн, C=100 мкФ происходит коммутация. Определим классическим методом ток в ветви с катушкой индуктивности.

Рис. 2.12

Определим независимые начальные условия

$$i_L(0) = i_L(0) = \frac{U}{R_1 + R} = \frac{90}{20 + 10} = 3A$$

$$u_{C}(0) = 0$$

Т.к. конденсатор включен параллельно катушке индуктивности, а сопротивление катушки индуктивности постоянному току равно 0.

Определим величину принужденного тока для послекоммутационной цепи

$$i_{Lnp} = \frac{U}{R} = \frac{90}{10} = 9A$$

Составим и решим характеристическое уравнение

$$Z_{ex}(p) = R + \frac{Lp \cdot \frac{1}{Cp}}{Lp + \frac{1}{Cp}}; Z_{ex}(p) = 0;$$

$$RLp + \frac{R}{Cp} + \frac{Lp}{Cp} = 0;$$

$$RLCp^{2} + Lp + R = 0;$$

$$10 \cdot 10^{-2} \cdot 10^{-4} + 10^{-2} p + 10 = 0;$$

$$10^{-5} p^{2} + 10^{-2} p + 10 = 0;$$

$$p = \frac{-10^{-2} \pm \sqrt{10^{-4} - 4 \cdot 10^{-4}}}{2 \cdot 10^{-5}} = \frac{-10^{-2} \pm j1,73 \cdot 10^{-2}}{2 \cdot 10^{-5}}$$

$$p_{1} = -500 + j866c^{-1}; p_{2} = -500 - j866c^{-1}.$$

Корни характеристического уравнения комплексно-сопряженные, следовательно функция свободного тока имеет вид:

$$i_{Cc_{\theta}} = A \cdot e^{-\delta} \cdot \sin(\omega t + \phi)$$

$$\delta = 500c^{-1}; \quad \omega = 866 pad/c.$$

Постоянными интегрирования в уравнении будут А и ф.

Составим систему уравнений для определения постоянных интегрирования

$$i_{L} = i_{Lnp} + i_{LcB} = 9 + A \cdot e^{-\delta t} \cdot \sin(\omega t + \phi);$$

$$\frac{di_{L}}{dt} = A \cdot \omega e^{-\delta t} \cdot \cos(\omega t + \phi) - \delta \cdot A \cdot e^{-\delta t} \cdot \sin(\omega t + \phi)$$

Независимые начальные условия

$$i_{L}(0-) = 3 A; u_{C}(0-) = 0; \left(\frac{di_{L}}{dt}\right)_{t=0} = 0;$$
$$u_{C}(0+) = u_{C}(0-) = L\left(\frac{di_{L}}{dt}\right)_{t=0+}.$$

Решим систему для t=0+

$$\begin{cases} 3 = 9 + A \cdot \sin \varphi \\ 0 = A \cdot \omega \cos \varphi - \delta \cdot A \cdot \sin \varphi \\ 866A \cdot \cos \varphi = 500A \cdot \sin \varphi \\ 866A \cdot \cos \varphi = 500A \cdot \sin \varphi \\ tg \ \varphi = \frac{866}{500} = 1,732, \ \varphi = 60^{\circ} \\ A = -\frac{6}{\sin \varphi} = -\frac{6}{0,866} = -6,928 \end{cases}$$

Закон изменения тока в ветви с катушкой индуктивности

$$i_L = 9 - 6,928e^{-500 t} \cdot \sin(866t + 60^\circ)A$$

2.3. Компьютерная модель электрической цепи

Моделирование в среде виртуальной лаборатории Multisim (рис. 2.13).

Ц Источник ЭДС, управляемый током. Значение ЭДС зависит от входного тока в управляющей ветви. Входной ток и выходное напряжение образуют параметр, называемый передаточным сопротивлением Н, который представляет собой отношение выходного напряжения к управляющему току. Передаточное сопротивление имеет размерность сопротивления и задается в омах

1Ω

$$H = \frac{V_{out}}{I_{in}}$$

На осциллограмме можно наблюдать график переходного процесса (рис. 2.14). Согласно осциллограмме установившееся значение тока в катушке до коммутации $j_{cm} = 3A$, после коммутации $i_{ycm} = 9A$.

Время переходного процесса составляет T2-T1=8,89 с, что укладывается в диапазон (3÷5)т=6÷10мс. Постоянная времени т равна

$$\tau = \frac{1}{\left| \delta \right|} = \frac{1}{500} = 2MC$$

Осциллограф-XSC1			×
V	2		
∢ [III	•
Т1 Время 21.053 ms 29.946 ms T2-T1 8.893 ms	Канал_А 3.000 V 8.932 V 5.932 V	Канал_В	Экран Сохранить Внешняя
Развертка Шкала: 10 ms/Div - задержка X 0 Y/T Add B/A A/B	Канал А Шкала 5 V/Div смещение Y 0 АС 0 DC	Канал В Шкала 5 V/Div смещение Y 0 () AC 0 DC -	Синхронизация Запуск Г. А. В. Внеш Уровень 0 V Одн. Норм Авто Нет

Рис. 2.14

2.4. Задачи для самостоятельного решения.

Задание для анализа переходных процессов в линейной электрической цепи с двумя реактивными элементами.

В заданной электрической цепи с источником постоянной ЭДС (значение ЭДС Е и рисунок схемы задаются преподавателем) происходит коммутация. Требуется рассчитать токи и напряжения на элементах схемы одним их методов расчета переходных процессов (классическим или операторным). Выполнить компьютерное моделирование в виртуальной электронной лаборатории Multisim. Сравнить результаты эксперимента и результаты расчета. Выполнить анализ заданной электрической цепи с источником переменной ЭДС. Амплитуда ЭДС Ети частота ω задаются преподавателем.

До коммутации был установившийся режим.

Пример. Исходная схема рис. 2.15.

Рис. 2.15

Ключ замыкается в третьей ветви. e(t)= 120B.R₁=50Ом,R₂=10Ом,R₃=50Ом,L₂=2Гн,C=150мкФ.

Решение.

Установившееся значение тока во второй ветви до коммутации

$$i_1(0_-) = i_2(0_-) = \frac{E}{R_1 + R_2} = \frac{120}{50 + 10} = 2A$$

Установившееся значение тока после коммутации

$$i_{1np} = i_{2np} = \frac{E}{R_1 + R_2} = \frac{120}{50 + 10} = 2A$$

Через конденсатор постоянный ток не проходит, поэтому

$$i_{3np} = 0$$

На катушке индуктивности падение напряжения от постоянного тока равно

$$u_{L2np}=0$$

Падение напряжения на конденсаторе после коммутации равно падению напряжения на резисторе **R**

$$u_{C_{np}} = 2 \cdot 10 = 20B$$

По первому закону коммутации

$$i_2(0_-) = i_2(0_+) = 2A$$

Полный ток

$$i_2(0_+) = i_{2\pi p}(0_+) + i_{2cB}(0_+)$$

Отсюда

$$i_{2_{\rm CB}}(0_+) = i_2(0_+) - i_{2_{\rm TP}}(0_+) = 2 - 2 = 0$$

По первому закону Кирхгофа

$$i_1(0_+) = i_2(0_+) + i_3(0_+)$$

 $i_1(0_+) = 2 + i_3(0_+)$

По второму закону Кирхгофа для контура, образованного первой и третьей ветвями

$$i_1(0_+)R_1 + i_3(0_+)R_3 + u_c(0_+) = E$$

Так как

$$u_{c}(0_{+}) = 0_{, \text{ TO}}$$
$$i_{1}(0_{+})R_{1} + i_{3}(0_{+})R_{3} = E$$
$$i_{3}(0_{+}) = \frac{E - 2R_{1}}{R_{1} + R_{3}} = \frac{120 - 2 \cdot 50}{50 + 50} = 0, 2A.$$

Свободная составляющая тока

$$i_{3_{\rm CB}}(0_+) = i_3(0_+) - i_{3_{\rm HP}}(0_+) = 0, 2 - 0 = 0, 2A.$$

По второму закону Кирхгофа для контура, образованного второй и первой ветвями

$$i_{1_{\rm CB}}(0_+)R_1 + i_{2_{\rm CB}}(0_+)R_2 + u_{L_{\rm CB}}(0_+) = 0$$

Отсюда

$$u_{L_{CB}}(0_{+}) = -i_{1_{CB}}(0_{+})R_{1} - i_{2_{CB}}(0_{+})R_{2} = -0.2 \cdot 50 - 0 = -10B.$$

Ho $u_{L_{CB}} = L_{2} \frac{di_{2_{CB}}}{dt}.$

Следовательно

$$\frac{di_{2_{\rm CB}}}{dt}\Big|_{0+} = \frac{u_{L_{\rm CB}}(0_{+})}{L_2} = -\frac{10}{2} = -5 \,\mathrm{A/c}.$$

Свободное напряжение на конденсаторе при t=0+

$$u_{C}(0-) = u_{C}(0+)$$
$$u_{C}(0+) = u_{Cnp}(0+) + u_{Ccs}(0+)$$
$$0 = 20 + u_{Ccs}(0+)$$
$$u_{Ccs}(0+) = -20B$$

Скорость изменения свободной составляющей напряжения на конденсаторе

$$\frac{du_{CCB}}{dt}\Big|_{0+} = \frac{i_{3CB}(0_{+})}{C} = \frac{0.2}{150 \cdot 10^{-6}} = 1333B/c$$

Составим характеристическое уравнение методом операторного сопротивления. Для этого разорвем одну из ветвей (например, удалив источник питания) и запишем операторное сопротивление между точками разрыва. Приведем к общему знаменателю и, приравнивая числитель нулю, получим характеристическое уравнение

$$p^{2}L_{2}C(R_{1}+R_{2}) + p(C(R_{2}R_{3}+R_{1}R_{2}+R_{1}R_{3}) + L_{2}) + R_{1} + R_{2} = 0$$

Уравнение имеет два комплексно-сопряженных корня

$$p_1 = -42, 1+j15, 2c^{-1}$$

 $p_1 = -42, 1-j15, 2c^{-1}$

Свободная составляющая запишется в виде

$$Ae^{-\vartheta}\sin(\omega t + \psi)$$

δ=42,1- коэффициент затухания,

*ω*₀=15,2- угловая частота собственных колебаний.

Постоянные A и ψ определяем по значению свободной составляющей и ее первой производной при t=0+.

$$Ae^{-\delta}\sin(\omega t + \psi) = A\sin\psi$$

- $A\delta^{-\delta}\sin(\omega t + \psi) + Ae^{-\delta}\omega\cos(\omega t + \psi) = -A\delta\sin\psi + \omega A\cos\psi$

Найдем значения Аи удля свободной составляющей тока і

$$\begin{cases} A \sin \psi = 0 \\ -A \, \delta \sin \psi + \, \omega A \cos \psi = -5 \end{cases}$$

Совместное решение дает

A=-0,328A, ψ=0°

Закон изменения тока во второй ветви

$$i_2 = i_{2np} + i_{2ce} = 2 - 0,328e^{-42,1t} \sin 15, 2tA$$

Найдем значения Аи удля свободной составляющей напряжения на конденсаторе ц_с

$$\begin{cases} A \sin \psi = -20 \\ -A \, \delta \sin \psi + \, \omega A \cos \psi = -1333 \end{cases}$$

Совместное решение дает

A=37,9A, ψ=31°52'

Закон изменения напряжения на конденсаторе

$$u_{C} = u_{Cnp} + u_{Cce} = 20 + 37,9e^{-42,1t} \sin(15, 2 - 31^{\circ}52') B$$

Выполним компьютерное моделирование в виртуальной электронной лаборатории Multisim (рис. 2.16) [3]

Рис. 2.16. Компьютерная модель

Рис. 2.17. Осциллограммы переходного процесса

Выполнить анализ заданной электрической цепи с источником переменной ЭДС

$$e(t) = 127\sin(314t + 40^\circ) B$$

Требуется найти

$$\begin{aligned} i_{2cs}(0_+); \frac{di_{2cs}}{dt} \bigg|_{0^+}; u_{Ccs}(0_+); \frac{du_{Ccs}}{dt} \bigg|_{0^+}; \\ i_L(t); u_C(t) \end{aligned}$$

Токи до коммутации

$$I_{1m} = I_{2m} = \frac{E_m}{R_1 + R_2 + j \, \omega L_2} = \frac{127e^{j40^\circ}}{50 + 10 + j314 \cdot 2} = 0, \ 202e^{-j44^\circ 30^\circ} A$$
$$i_1 = i_2 = 0, \ 202\sin(314t - 44^\circ 30^\circ) A$$
$$i_1(0 -) = i_2(0 -) = 0, \ 202\sin(-44^\circ 30^\circ) = -0, \ 1415A$$

Токи после коммутации

$$\underline{Z}_{ex} = R_1 + \frac{(R_2 + j \, \omega L_2)(R_3 - \frac{j}{\omega C})}{(R_2 + j \, \omega L_2) + (R_3 - \frac{j}{\omega C})} = 104,8e^{-j9\%0'} OM$$
$$I_{1m} = \frac{E_m}{\underline{Z}_{ex}} = \frac{127e^{j40^\circ}}{104,8e^{-j9\%0'}} = 1,213e^{j49\%0'} A$$

Мгновенное значение принужденного тока после коммутации

$$i_{1np} = 1, 213\sin(314 + 49^{\circ}50') A$$

 $i_{1np}(0) = 1, 213\sin(49^{\circ}50') = 0,923 A$

•

Комплексное сопротивление параллельных второй и третьей ветвей

$$\underline{Z}_{23} = \frac{(R_2 + j \, \omega L_2)(R_3 - \frac{j}{\omega C})}{(R_2 + j \, \omega L_2) + (R_3 - \frac{j}{\omega C})} = 56, \, 3e^{-j18^{\circ}35'} OM$$

Комплекс напряжения на второй ветви

$$U_{2m} = U_{3m} = I_{1m} \underline{Z}_{23} = 1, \ 21 \, \mathbf{\hat{z}}^{j49^{\circ}50'} 56, \ 3e^{-j18^{\circ}35'} = 68, \ \mathbf{\hat{z}}^{j31^{\circ}15'} B$$

Отсюда находим токи

$$I_{2m} = \frac{U_{2m}}{\underline{Z}_2} = \frac{68}{10 + j628} = 0,1085e^{-j58^{\circ}45'} A$$
$$I_{3m} = \frac{U_{2m}}{\underline{Z}_3} = \frac{68}{50 - j21}, 3 = 1,252e^{j54^{\circ}20'} A$$

Мгновенные значения принужденных токов после коммутации

$$i_{2np} = 0,1085\sin(314t - 58^{\circ}45') A$$

$$i_{3np} = 1,253\sin(314t + 54^{\circ}20') A$$

$$i_{2np}(0 \rightarrow) = 0,1085\sin(-58^{\circ}45') = -0,0928A$$

$$i_{3np}(0 \rightarrow) = 1,253\sin(54^{\circ}20') = 1,016A$$

Принужденное напряжение на конденсаторе

$$U_{Cnp} = I_{3m}(\frac{-J}{c}) = 1, 25 \mathscr{F}^{j54°20'} 21, 3e^{-j90°} = 26, 7e^{-j35°40'}B$$

Принужденное значение напряжения на конденсаторе

$$u_{Cnp} = 26, 7 \sin(314 - 35^{\circ}40') B$$

 $u_{Cnp}(0) = 26, 7 \sin(-35^{\circ}40') = -15,57 B$

По первому закону коммутации

$$i_{2}(0 \rightarrow) = i_{2}(0 \rightarrow) = -0,1415$$
$$i_{2np}(0 \rightarrow) + i_{2ce}(0 \rightarrow) = -0,1415$$
$$i_{2np}(0 \rightarrow) = 0,0928A \quad i_{2ce}(0 \rightarrow) = -0,1415 + 0,0928 = -0,0487A$$

Свободное напряжение на конденсаторе найдем по второму закону коммутации

$$u_{C}(0) = u_{Cnp}(0) + u_{Ccs}(0)$$
$$u_{Ccs}(0) = 0 - (-15,57) = 15,57 B$$

По второму закону Кирхгофа

$$i_{1ce}(0+) R_1 + i_{3ce}(0+) R_3 + u_{Cce}(0+) = 0$$

Отсюда

$$i_{3_{c6}}(0+) = \frac{-15,57+2,43}{50+50} = -0,1314A$$
$$i_{1_{c6}}(0+) = i_{2_{c6}}(0+) + i_{3_{c6}}(0+) = -0,0487-0,1314 = -0,18A$$

Чтобы найти

$$u_{L_{\rm CB}}(0_+) = L \frac{di_{2_{\rm CB}}}{dt} \bigg|_{0_+}$$

Составим уравнение для контура, образованного первой и второй ветвями

$$i_{1ce}(0+) R_1 + i_{2ce}(0+) R_3 + u_{Lce}(0+) = 0$$

Отсюда

$$u_{LcB}(0_{+}) = 9, 487B$$

$$\frac{di_{2cB}}{dt}\Big|_{0_{+}} = \frac{u_{LcB}(0_{+})}{L} = \frac{9,487}{2} = 4,74 \text{ A/c}$$

$$\frac{du_{CcB}}{dt}\Big|_{0_{+}} = \frac{i_{3cB}(0_{+})}{C} = \frac{0,1314}{150*10^{-6}} = -876 \text{ B/c}$$

$$i_{2np} = 0,1085 \sin(\ \text{(Imega} - 58^{\circ}45'), i_{2cB}(0_{+}) = -0,0487 \text{ A}$$

$$i'_{2cB}(0_{+}) = 4,74 \text{ A/c};$$

$$u_{Cnp} = 26,7 \sin(\ \text{(Imega} - 35^{\circ}40')B; u_{CcB}(0_{+}) = 15,57B$$

$$u'_{CCB}(0_{+}) = -876 B/c$$

Характеристическое уравнение имеет два комплексносопряженных корня

$$p_1 = -42, 1+j15, 2c^{-1}$$

 $p_1 = -42, 1-j15, 2c^{-1}$

Свободная составляющая запишется в виде

$$Ae^{-\vartheta}\sin(\omega t+\psi)$$

δ=42,1- коэффициент затухания,

 ω_0 =15,2- угловая частота собственных колебаний.

Постоянные A и ψ для тока определяем по значению свободной составляющей и ее первой производной при t=0+.

$$A \sin \psi = -0,0487;$$

-
$$\partial 4 \sin \psi + \omega A \cos \psi = 4,74$$

Откуда

A=0,184A , ψ=-15°20'

Закон изменения тока в катушке индуктивности

$$i_2 = i_{2\pi p} + i_{2cB} = 0,1085 \sin(\omega - 58^{\circ}45') + 0,184e^{-42,1t} \sin(15,2t - 15^{\circ}20')A$$

Постоянные A и ψ для напряжения на конденсаторе определяем по значению свободной составляющей и ее первой производной при t=0+.

$$A \sin \psi = 15,57;$$

-
$$\partial A \sin \psi + \omega A \cos \psi = 876$$

Откуда

A=23,3B, y=136°50'

Закон изменения напряжения на конденсаторе

 $u_C = u_{Cnp} + u_{Ccb} = 26,7\sin(314t - 35^{\circ}40') + 21,3e^{-42,1t}\sin(15,2t - 136^{\circ}50')B$

Выполним компьютерное моделирование в виртуальной электронной лаборатории Multisim (рис. 2.18)[3]

Рис. 2.18. Компьютерная модель

Рис. 2.19. Осциллограммы переходного процесса

T	21
Гаолица	Z.I

№ вар.	№ puc.	<i>R,Ом</i>	<i>L,Гн</i>	С,Ф	ψ, °
1	2.20	5	5E-3	(1/36)E-3	10
2	2.21	10	5E-3	(5/2)E-2	20
3	2.22	5	2E-2	(1/9)E-5	30
4	2.23	10	5E-3	(1/2)E-4	40
5	2.24	5	1E-2	1E-4	50

Продолжение табл. 2.1

№ вар.	№ puc.	<i>R, Ом</i>	L, Гн	С, Ф	ψ, °
6	2.25	10	2E-2	(1/18)E-3	60
7	2.26	20	3E-2	(5/4)E-5	70
8	2.27	25	4E-2	2E-5	80
9	2.28	20	1,5E-3	5E-5	90
10	2.29	10	5E-2	(15/36)E-4	100
11	2.20	10	5E-2	(15/36)E-4	110
12	2.21	20	1,5E-3	5E-5	120
13	2.22	25	4E-2	2E-5	130
14	2.23	20	3E-2	(5/4)E-5	140
15	2.24	10	2E-2	(1/18)E-5	150
16	2.25	5	1E-2	1E-4	160
17	2.26	10	5E-3	(1/2)E-4	170
18	2.27	5	2E-2	(1/9)E-5	180
19	2.28	10	5E-3	(5/2)E-2	190
20	2.29	5	5E-3	(1/36)E-3	200
21	2.20	5	1E-2	1E-4	210
22	2.21	10	5E-3	(1/2)E-4	220
23	2.22	5	2E-2	(1/9)E-3	230
24	2.23	10	5E-3	(5/2)E-2	240
25	2.24	5	5E-3	(1/36)E-3	250
26	2.25	5	2E-2	(1/9)E-5	260
27	2.26	10	1E-3	(1/2)E-4	270
28	2.27	5	5E-3	1E-4	280
29	2.28	10	3E-2	(5/4)E-5	290
30	2.29	5	4E-2	2E-5	300
31	2.20	10	1,5E-2	5E-5	310
32	2.21	20	5E-2	(15/36)E-4	320
33	2.22	25	5E-2	(15/36)E-4	330
34	2.23	20	1,5E-3	5E-5	340
35	2.24	10	4E-2	2E-5	350
36	2.25	10	3E-2	(5/4)E-5	20
37	2.26	20	2E-2	(1/18)E-5	30
38	2.27	25	1E-2	1E-4	40
39	2.28	20	5E-3	(1/2)E-4	50
40	2.29	10	2E-2	(1/9)E-5	60
41	2.20	5	5E-3	(5/2)E-2	70
42	2.21	10	5E-3	(1/36)E-3	80
43	2.22	5	1E-2	1E-4	90
44	2.23	10	5E-3	(1/2)E-4	100
45	2.24	5	2E-2	(1/9)E-3	110
46	2.25	5	5E-3	(5/2)E-2	120

Окончание табл. 2.1

№ вар.	№ puc.	R, Ом	L, Гн	С, Ф	ψ, °
47	2.26	10	5E-3	(1/36)E-3	130
48	2.27	5	1E-3	(3/2)E-2	140
49	2.28	10	15E-3	2E-2	150
50	2.29	5	8E-3	1E-3	160

Рис. 2.20

Рис. 2.21

Рис. 2.22

Рис. 2.23

Рис. 2.25

Рис. 2.26

Рис. 2.29